LESSON 02: Creating Database Objects

Defining Data Types

THE BOTTOM LINE

In this section, you will learn what data types are, why they are important, and
how they affect storage requirements. When looking at data types, you need to
understand what each type is designed to do within a table, as well as how certain
types work best for each column, local variable, expression, or parameter. Also,
when choosing a data type to fit your requirements, you need to ensure that
whatever type you choose provides the most efficient storage and querying
schema. In fact, one of the key roles of a database administrator is to ensure that
the data within each database is kept uniform by deciding which data type is best
suited to the application module currently being worked on.

A data type is an attribute that specifies the type of data an object can hold, as well as
how many bytes each data type takes up. For example, several data types handle only
whole numbers, which makes them good for counting or for identification. Other data
types allow decimal numbers and therefore come in handy when storing values dealing
with money. Still other data types are designed to store strings or multiple characters so
that you can define labels, descriptions, and comments. Last are other miscellaneous
data types that can store dates, times, binary numbers consisting of Os and 1s, and
pictures. As a general rule, if you have two data types that are similar and differ only in
how many bytes each uses, one of the data types will have a larger range of values
and/or offer increased precision.

Using Built-in Data Types

Microsoft SQL Server includes a wide range of predefined data types called built-
in data types. Most of the databases you will create or use employ only these types
of data.

Microsoft SQL Server 2008’s built-in data types are organized into the following
general categories:

¢ Exact numbers
* Approximate numbers
* Date and time

* Character strings

Page | 1

Unicode character strings

* Binary strings

Other data types

* CLR data types

Spatial data types

You’ll use some of these built-in data types on a regular basis and others more
sporadically. Either way, it’s important to understand what these data types are and how
they are utilized inside a database. Tables 2-1 and 2-2 show the most commonly used
data types. Note that in Table 2-2, the asterisk (*) denotes the newest data-type additions
in SQL Server 2008.

CERTIFICATION READY
What data type would you use for the cost of an automobile? What type would you
use to count the number of cars you have in stock?

2.1

Table 2-1 Most commonly used data types

DATA
TYPE

EXPLANATION

Money
(numeric)

This numeric data type is used in places where you want money or currency involved in
your database; however, if you need to calculate any percentage columns, it is best to use
the “float” data type instead. Essentially, the difference between a numeric data type and
a float data type rests in whether you are using the data type for approximate numbers or
fixed precision. A money or numeric data type is a fixed-precision data type because it
must be represented with precision and scale.

Datetime

The datetime data type is used to store date and time data in many different formats. Two
main subtypes of this data type—datetime and datetime2—are available, and you should
consider what you are using the stored data for when deciding which subtype to use. In
particular, if you will be storing values

between the dates of January 1, 1753, and December 31, 9999, that are accurate to 3.33
milliseconds, you should use the datetime data type. In contrast, if you will be storing
values between January 1, 1900, and June 6, 2079, that are accurate to only 1 minute, then
datetime?2 is the data type to use. The second important difference between the two data
types is that the datetime data type uses 8 bytes of storage, whereas datetime2 only
requires 4 bytes.

Integer

The integer (int) numeric data type is used to store mathematical computations and is
employed when you do not require a decimal point output. Examples of integers include
the numbers 2 and 2.

Page | 2

DATA EXPLANATION

TYPE

Varchar This character-string data type is commonly used in databases where you are supporting
English attributes. If you are supporting multiple languages, use the nvarchar data type
instead, as this will help minimize issues of character conversion.

Boolean The Boolean data type is also known as the bit data type. Here, if your columns store 8 bits
or fewer, the columns will be stored as 1 byte; if, they contain 9 to 16 bits, the columns
will be stored as 2 bytes; and so forth. The Boolean data type converts true and false string
values to bit values, with true converted to 1 and false converted to 0.

Float The float numeric data type is commonly used in the scientific community and considered

an approximate-number data type. This means that not all values within the data-type
range will be represented exactly. In addition, depending on which type of float is used, a
4-byte float supports precision up to 7 digits and an 8-byte float supports precision up to
15 digits.

Table 2-2 Data types

DATA TYPE | USE/DESCRIPTION STORAGE

Exact Numerics:

bit

Integer with either a 1 or 0 value. (Columns of 9 to 16 bits are | 1 byte

stored as
2 bytes, and storage size continues to increase as the number of
bits in a
column increases.)
R Integer data from 0 to 255. 1 byte
tinyint
) Integer data from -2”15 (-32,768) to 2715-1 (32,767). 2 bytes
smallint
) Integer data from -2731(-2,147,483,648) to 2731-1 | 4 bytes
int (2,147,483,647).
o Integer data from -2°63 (-9,223,372,036,854,775,808) to 2"63-1 | 8 bytes
bigint (9,223,372,036,854,775,807).
. Fixed precision and scale. Valid values range from -10738+1 | Varies
numeric through 10"38-1.
) Fixed precision and scale. Valid values range from -10738+1 | Varies
decimal

through 10738-1.

Page | 3

DATA TYPE USE/DESCRIPTION STORAGE
Monetary or currency values from -214,748.3648 to | 4 bytes

smallmoney 214,748.3647.
Monetary or currency values from -922,337,203,685,477.508 to | 8 bytes

Lol 922,337,203,685,477.5807.

Approximate

Numerics:

datetime Defines a date that is combined with a time of day with fractional | 8 bytes
seconds based on a 24-hour clock. Range: January 1, 1753, through
December 31, 9999. Accuracy: Rounded to increments
0f.000, .003, or .007 seconds.

smalldatetime Defines a date that is combined with a time of day. The time is | 4 bytes
based on a 24-hour day, with seconds always zero (:00), meaning
there are no fractional seconds. Range: 1900-01-01 through 2079-
06-06 (January 1, 1900, through June 6, 2079). Accuracy: one
minute.

date* Defines a date. Range: 0001-01-01 through 9999-12-31. (January | 3 bytes
1, 1 AD, through December 31, 9999). Accuracy: one day.

time* Defines a time of day. This time is without time-zone awareness | 5 bytes
and is based on a 24-hour clock. Range: 00:00:00.0000000 through
23:59:59.9999999. Accuracy: 100 nanoseconds.

datetimeoffset* Defines a date that is combined with a time of day that has time- | 10 bytes
zone awareness and is based on a 24-hour clock. Range: 0001-01-
01 through 9999-12-31 (January 1, 1 AD, through December 31,
9999). Range: 00:00:00 through 23:59:59.9999999. Accuracy: 100
nanoseconds.

datetime2* Defines a date that is combined with a time of day that is based on | Varies
a 24-hour clock. Range: 0001-01-01 through 999-12-31 (January
1, 1 AD, through December 31, 9999). Range: 00:00:00 through
23:59:59.9999999. Accuracy: 100 nanoseconds.

Character

Strings:

char Character data type with fixed length. Varies

varchar Character data type with variable length. Varies

text This data type will be removed in future SQL releases; therefore, | Varies

use varchar(max) instead.

Page | 4

DATA TYPE USE/DESCRIPTION STORAGE

Unicode

Character

Strings:

nchar Character data type with fixed length. Varies

nvarchar Character data type with variable length. Varies

ntext This data type will be removed in future SQL releases; therefore, | Varies
use nvarchar(max) instead.

Binary Strings:

binary Binary data with fixed length. Varies

varbinary Binary data with variable length. Varies

image This data type will be removed in future SQL releases; therefore, | Varies
use varbinary(max) instead.

Other Data

Types:

sql_variant Stores values of various SQL Server-supported data types, except | Varies
text, ntext, image, timestamp, and sql_variant.

uniqueidentifier 16-byte GUID. 16 bytes

(UUID)

Remember that in SQL Server, each column, local variable, expression, and parameter
always has a related data type that defines the storage characteristics of the data being
stored. This is shown in Table 2-1.

Now that you have some understanding of the many data types available in Microsoft
SQL Server, keep in mind that when two expressions have different data types, collation,
precision, scale, or length, the characteristics of the results will be determined as follows:

* When two expressions (mathematical functions or comparison functions) have
different data types, rules for data-type precedence specify that the data type

with lower precedence is converted to the data type with higher precedence.

TAKE NOTE*
Each column, local variable, expression, and parameter always has a related data
type, and each of the data types is an attribute.

Page | 5

* Collation refers to a set of rules that determine how data is sorted and compared.
By default, SQL Server has predefined collation precedence. If you wish to
override how data is being sorted, you must use a collation clause.

* The precision, scale, and length of the result depend on the precision of the same
in the input expression. In other words, if you take several different values and
perform a mathematical operation on those values, the precision, scale, and
length will be based on those values on which you are performing the

mathematical operations.
Now, let’s go through some of the most common built-in data types in greater detail so
that you are more familiar with how to use them.

Using Exact Numeric Data Types

Exact numeric data types are the most common SQL Server data types used to
store numeric information. Some of these data types allow only whole numbers,
whereas others allow decimal numbers.

Exact numerics include (but are not limited to)int, bigint,bit,
decimal, numeric,

money, and smalImoney:

* intisthe primary integer (whole number) data type.

* bigintisintended for use when integer values will exceed the 1nt data type’s
range of support. Functions return bigint only if the original expression is
a bigint data type. Note that SQL Server will not automatically promote other
integer data types
(i.e, tinyint, smallint, andint)tobigint.

* bitis a Transact-SQL integer data type that takes a value of 1, 0, or NULL and
produces the following characteristics:
> SQL Server Database Engine will optimize the storage of bit columns, meaning
that if your table has columns that are 8 or fewer bits wide, these columns will be
stored as 1 byte, and if it has 9- to 16-bit columns, they will be stored as 2 bytes.
[t is important to realize that 1 byte equals 8 bits when considering data types.
o TRUE and FALSE string values can be converted to bit values.
Specifically, TRUE is converted to 1 and FALSE is converted to O.

Page | 6

* decimal and numericare also Transact-SQL data types that have a fixed
precision and scale. The syntax for these data types is expressed as follows:

decimal[(p[,s1)]

numeric[(p[,s]1)]
> Precision (p) is the maximum total number of decimal digits that can be

stored, both to the left and the right of the decimal point. This value must be a
minimum of 1 and a maximum of 38. The default precision number is 18.
> Scale(s) reflects the maximum number of decimal digits that can be stored
to the right of the decimal point. This must be a value from 0 through p, but it
can be specified only if precision is also specified. The default scale is 0.

* money and smallmoney are Transact-SQL data types you would use to
represent monetary or currency values. Both data types are accurate to
1/10,000th of the monetary units they represent.

Using Approximate Numeric Data Types

Approximate numeric data types are not used as often as other SQL Server data
types. However, if you need more precision (more decimal places) than is available
with the exact numeric data types, you can use either float or real, although
you should be aware that these data types typically require additional bytes of
storage.

float and real are used in conjunction with floating-point numeric data. This means
that all floating data is approximate; thus, not all values that are represented by an
approximate data-type range can be expressed accurately.

The syntax of real is fToat(n) . nis the number of bits used to store the mantissa
of the f1oat number as represented in scientific notation; therefore, the precision and
storage size are dictated if n is actually specified. The value of n must be between 1
and 53, with the default value being 53. The mantissa is the whole number and decimal
part of a value but not including place holders and exponents. For example, if you have
3.42732, 3.42732 is the mantissa. But if you have 3.23x105, the value is equivalent to
323,000, the mantissa is 3.23.

Page | 7

USING DATE AND TIME DATA TYPES

The date and time data types, of course, deal with dates and times. These data types
include

date, datetime, datetime?2, datetimeoffset,
smalldatetime, and time.

date is used to define a date starting with January 1, 1 AD, and ranging to December
31,9999 AD. Like any data type, the date data type has the descriptors shown in Table
2-3. Although dates themselves are not affected by daylight saving time, you may use
dates to determine whether the time on a certain day reflects daylight saving time.

While some of the information in Table 2-3 is self-explanatory, some of it is not. For
example, the default string literal format means that by default, it will store the date
with the year, followed by the month (two digits), and the day (two digits). It can store
any day from January 1, 1 AD to December 31, 9999. The character length means that
to display the date, it would take 10 characters such as 2012-03-17. The precision scale
shows that it 10 whole numbers with no decimal numbers allowed. To store the date
field takes 3 bytes of data. In addition, it is only accurate to one day. So you cannot use
decimal number or fractions when dealing with the date value. The default value is
1900-01-01, which means if nothing is defined, it will automatically be assigned
January 1, 1900. It uses the Gregorian calendar. Last, it does not use daylight savings
time.

PROPERTY VALUE
Syntax Date
Usage DECLARE @MyDate date

CREATE TABLE Tablel (Column1 date)

Default string literal format (used | YYYY-MM-DD (This can be utilized for backward compatibility with
for down-level client) down-level clients)

Range 0001-01-01 through 9999-12-31 January 1, 1 AD, through
December 31,9999 AD

Element ranges YYYY is four digits from 0001 to 9999 to represent a year
MM is two digits from 01 to 12 to represent a month in

Page | 8

PROPERTY VALUE

a specified year DD is two digits from 01 to 31, depending
on the month, that represent a day of the specified month

Character length 10 positions
Precision, scale 10,0

Storage size 3 bytes, fixed
Accuracy One day
Default value 1900-01-01

This value is used for the attached date part for inherent conver
sion from time to datetime2 or datetimeoffset

Calendar Gregorian

User-defined fractional second | No
precision

Time-zone offset aware and | No
preservation

Daylight-saving aware No

In comparison, datetime defines a date that is combined with a time of day expressed
with fractional seconds and based on a 24-hour clock. This data type is accurate to
0.00333 seconds. If you need more accuracy, you should use the datetime?2 data
type, which that is accurate up to 100 nanoseconds. If, however, you don’t need to keep
track of seconds (which, of course, is less accurate), you can save some storage space
by employing the smal1ldatetime data type instead.

The DateTimeOffset data type is similar to the DateTime data type, but it also
keeps track of time zones. For example, if you use two DateTimeOffset values
with the same Coordinated Universal Time UTC (which is Greenwich Mean Time in
most cases) time in different time zones, the two values will be the same.

If you want to create a data set in which the time of day has time-zone awareness and
is based on a 24-hour clock, you will need to use datetimeoffset.

Page | 9

smalldatetime combines a date with a time of day, with the time based on a 24-
hour day and with seconds always showing zero as (:00)—meaning that fractional
seconds are not provided.

Finally, time defines the time of day based on a 24-hour clock and is without time-
Zone awareness.

TAKE NOTE*

Use the time, date,

datetime2, and

dateoffset data types for new work because they align with the SQL standard
and are more portable. All butdatewill provide the most precision for
nanosecond applications.

UNDERSTANDING IMPLICIT CONVERSIONS

When working with SQL data, you may wish to convert values from one data type to
another. In most situations, these conversions are done automatically. When a
conversion is done automatically, it is called an implicit conversion. For example, if
you multiply an item’s cost (represented as a float) with the number of items
(represented as an integer), the answer will be expressed as a float. Figure 2-1 courtesy
of Microsoft, provides an in-depth analysis of implicit conversion between data types.

However, some implicit conversions are not allowed. For example, although a
DateTime value is represented as a float, you may not implicitly convert DateTime to a
float because itis meant to be a date and/or time. If you have a reason to force a
conversion, you can use the Cast and Convert functions.

Cast and Convert offer similar functionality. However, Cast is compliance with ANSI
standards, which allow you to import or export to other database management systems.
Convert is specific to T-SQL, but is a little bit more powerful.

The syntax of the cast function is:

cast(source-value AS destination-type)

Therefore, to convert the count variable to a float, you would use the following
command:

cast(count AS float)

The syntax of the convert function is:
CONVERT (data_type [(Tength)], expression [,style])

Page | 10

where you can specify how many digits or characters the value will be. For example:

CONVERT (nvarchar(10), OrderDate, 101)

This will convert the OrderDate, which is a DateTime data type to nvarchar value.

The 101 style represents USA date with century. mm/dd/yyyy.

To:

- d
£E ‘ ’3
» b4 3 -
o i‘?hiilui] S UURLT
e Sesososenenee esoseRERed
® oscomssonssen escosonenes
- 00 2000800000000 CRRRORRORRS
vt [1 B o.o.o.ooo.o.o.o.o.o:o.o
- OO0 S SO0 ONNNOROBERNEGE »
[G000 Ss SSBNEDORARINOBNOTE o
towime [L I L R R R])
viemewim [I LA L R R R L])
- L1 B L]]
- L1 XY
(omireste o0 sesenes »
dontonal (I IEERTRIR R}
—— [II XX LR) T3000000ROOY
N (IIXTR LR} SS00000ORORS
s ePesone o0 SonoNene
1. (JIEZXE LR] o9e oveeene
~r oheocoRe e8e8 SoBone»
N ohesenen e8e0e onene®
" esesenen o8e8eD Sonee
evein'L ehesones ehenete onen
e ([IIXZXIX XY] SSonenee BeN
gy [IIXTR IR} ooessenOee e®
soenoReS soo0eReReS »
fo— (X1 X LR © s (A LR T2 1)
v osonee
- =) o
ot esee
ou [I11] []
- SO0 NONORRROROREREED
- ittt
LA Ut sseee
J—— seesnes
@ Exphoit comwerson
@ imphcrt converuon
Corvervem ron sllowed

B Reguires exphcn CAST tn prevent the les of precison or scale that
TG GCCUT 1 4 IOl Cowerin
.WWM‘hm-m-ﬁlﬁ
SOUICE OF Langet 13 untyped arnd et be expicn

Figure 2-1 Implicit and explicit conversion types

Page | 11

USING CHARACTER STRINGS

A regular character uses one byte of storage for each character, which allows you to
define one of 256 (8 bits are in a byte, and 2"8 = 256) possible characters,
accommodating English and some European languages. A Unicode character uses two
bytes of storage per character so that you can represent one of 65,536 (16 bits are in 2
bytes, and 2"16 = 65,536) characters. The additional space allows Unicode to store
characters from just about any language, including Chinese, Japanese, Arabic, and so
on.

As you write the syntax for the different data types, remember that they also differ in
the way literals (fixed data value) are expressed. A regular character literal is always
expressed with single quotes. For example:

‘This is how a regular character string literal Tooks’

However, when you are expressing a Unicode character literal, it must have the letter
N (for National) prefixing the single quote. For example:

TAKE NOTE*
Any data type without the VAR element (char, nchar) within its name is fixed
length.

N‘This is how a Unicode character string literal Tlooks’

When you use a VAR element, SQL Server will preserve space in the row in which that
element resides based on the column’s defined size (and not on the actual number of
characters in the character string itself), plus an extra two bytes of data for offset data.
For example, if you want to specify that a string supports a maximum of only 25
characters, you would use

VARCHAR(25) .

Storage consumption, when using Unicode data types, is reduced from that of the
regular data type, thus allowing faster read operations; however, the price you pay for
using this data type is in the possibility of row expansion, leading to data movement
outside the current page. This means that any update of data using variable-length data
types may be less efficient than updates using fixed-length data types. It is possible to
define the variable-length data type with the MAX specifier, however, instead of using
the maximum number of characters identified in the string. For example, when a column
Is defined with the MAX specifier, a value with a size identified up to a certain threshold
(the default is 8,000) is stored inline in the row. Then, should you specify a value with
a size greater than the default threshold, that value will be stored external to the row
and identified as a large object, or LOB.

Page | 12

These are the most widely used character data types and are either of a fixed or variable
length. Each has its own individual characteristics that you need to take into
consideration when deciding which will have a positive effect on storage requirements.
Both char and varchar data sets need to be defined, or assigned, within the data
definition, or they may affect the maximum storage limits.

TAKE NOTE*

When n is not specified within a data definition or variable declaration statement,
the default length is 1. When n is not specified within the CAST function, the
default length is 30.

The data set char is identified as char [(n)] and is a fixed-length, non-Unicode
character (in other words, regular character) with a length of n bytes. The value
of n must be between 1 and 8,000, making the storage size n bytes. The other non-
Unicode data type, varchar[(n|max)], is a variable-length data set that can
consist of 1 to 8,000 characters.

Microsoft SQL Server supports only two character string types: regular and Unicode.
Regular data types include those identified with CHAR and VARCHAR . Unicode data
types are identified with NCHAR and NVARCHAR . Simple? Yes, in the sense that the
differences between regular and Unicode are the bytes of storage used for each.

TAKE NOTE*

Use nchar when the sizes of the column data entries will be similar.

Use nvarchar when the sizes of the column data entries will vary considerably,
for such things as binary files, image files, SQL variant, and UUID.

The Unicode character strings nchar and nvarchar can either be fixed or variable,
like the regular character strings; however, these strings use the UNICODE UCS-2
character set.

Page | 13

Creating and Using Tables

THE BOTTOM LINE
In this section, you will develop an understanding of the purpose of tables. You'll
also explore how to create tables in a database using proper ANSI SQL syntax.

The purpose of atable is to provide a structure for storing data within a relational
database. Without this structure, there is an increased probability of database failure. In
Lesson 1, you learned about the purposes of tables and how to create them. Let’s quickly
review some of the most important points to remember when creating a table in a
nongraphical user interface. As we do so, be sure to think about the purpose of a
relational database in the hierarchy of database administration.

A SQL database is the central container that retrieves data from many different tables
and views. You can run queries on these data, thereby interacting with the information
stored in the database to obtain the output you require. One advantage of a database
over a series of spreadsheets is that a database can parse out redundant storage and
information obtained from various relational spreadsheets.

As in programming, when you are designing, creating, and using databases, you can
easily use hundreds of objects, including databases, tables, columns, views, and stored
procedures. Therefore, to make your company’s database easier to manage, your
organization should establish and use a single, consistent standard. Of course, this also
means documenting this standard and distributing it to everyone who works with the
database.

It really doesn’t make any difference how you use uppercase and lowercase in a
database, as long as you are consistent. Two common naming conventions are
PascalCase and camelCase. Examples of PascalCase are such names as OrderDetails or
CustomerAddresses, whereas examples of camelCase are names like myAddress and
vendorTerms. No matter which standard you use, you should always be sure to use
names that are both accurate and descriptive. You should also avoid using spaces
because they add complications that make it necessary for you to use quotes. Instead,
use underscores (_) as word separators or use mixed upper and lower case characters.

Let’s first learn how to create a new table using SQL Server Management Studio (SSMS)
before we move on to the syntax method of table creation.

Page | 14

CREATE A TABLE USING SSMS

GET READY. Before you begin, be sure to launch SQL Server Management Studio.
Make sure you've expanded the particular database in which you wish to create
the new table, then follow these steps:

1. Right-click the Table folder and select New Table, as shown in Figure 2-2:

Fle Edt Ves Debug Took ‘Window Comvvunity Help

P mewouery |y | BB S D uiid:i.ﬂl
Conect~ 2 % m T .8 |
= |y win2008r2 (S0L Server 10,50. 1500 - CORPORATE \ad_patrickreg)
E [Databases
2 [_J System Databases
[Datshass Snapshots

sl |) SharePont_Config

Figure 2-2 Creating a new table

2. Use the information shown in Figure 2-3 to complete the details for Column
Name, Data Type, and Length, as specified in the parentheses and Allow Nulls
columns.

Page | 15

nmmmmmwrmmmm
ey | L Hhh D DS
&' =o04dZ2Z08
IR | wiiooosns ad_ dvtabe 1+ WOGHRL Al s | ==
comect %0l m T 8§ | coumnmeme | DataType | amowhets |
51 ([#2008 2 (SO Server 10.50.1600 & |_| imadialD nt r
S [Detsusss P fiame var char (50) =
* _Ji:slvﬂm [— varchar (50) v
3 Dulabase Snacshots
e e — =
) mpmrtterieTerpte [a]
| SharePont_AdearContend o
J Sherefurt_Config
) WSS_Coment_2000 m"'“-l
J Advantureiverkat 72008 8
¥ | Datsbacs Desgrams % |
b Tables {General] B
% Ll Syshem Tables (Name) Racks
3 o Buidverson Abow My .
3 dhe.firatcg TaiaType v 5
® O SekATAddess = Detmlt Vst o BV
2 Sakeal T Customer Langth 5
T SelemT.Customerid Table Desh
: gmm::xu:m = svtnbunn dofits
B D et rpdxec Computed Cokimm Spechorton -l
2 SwesT Productiod Detault Value or Binding
% 7] SwemT Productod
I SalestT SaesOrderD
1 u...r<...m..jJ

Flgure 2-3 Column names and identifying information

[Thi] dbso.Table_1 -
[YIS
ahl

(Piame) Tade 1

Descrpten
Sthems dbs
=] Mm
ukrmbcm
Lock Escalar Tabie
[Rsguiar Dl PRTHURT

Tt;{fll.ﬁ. PRIARY

Set the Default VValue of the DateCreated column to (getdate()); this will insert

the current date within each new record for that specific field. See Figure 2-4.

m“wmmmm
menquery | D chioh S| 5 S d g

@ ﬂmﬂ&ﬁﬂl
Covect- 3/ i m T
= Lﬂmlmbﬂﬂﬂ 0. 50. 3500 - OC
= L0 Cwtssassn
*1 | _J System Dutabases
;_ i Disiass Sty
|) Reporierees
w leﬁuuuTm
E |) SharePont_AseinContent_toih
| J) SherePont_Config
= J WEE Coewviant 200
S| Sedemnmrewerial TI00
#| _Jj Dabshase Desgrams
= 3 Tinbles
= System Tables
® T de Bubterson
= 1 dbe.Broiog
5 2] Sk T address
® T SeelTCustomer
0 SelesiT.Cimtomeriddre
% 7] Selen T Product
T Sakesl T Aroductlateger
¥ 7] SalesiT ProduciDescipl
T Selen T ProductModsl
2] Sales T ProductModsir
%] Salesl T SaleaOrcerDeta
T Sslen T SsesOrderties:
| Wews
= _J Synonyms
i Programmabiity
= 3 Servce Broker
¥) Swrage

%) Secunty
® L Sequity
_J Server Obpecis
W Rephoabon
_j Managament
2 SO0 Server Agent (Agen WP dsabl

K1 L]
themis) Savesd

Togls Window Community Help

munh_:'-'m...-m 1 - X
Cowmbame | DstaType | Mow buiks |
nt r
Aanetlame warr chuar (500 =3
var chaw [50) F
ades warr chuar (500 =3
TreCreaned datenre 1=
r
ok Prageres |
E =
|8 (General) =
] TirreCreated
il s Yes
Dats Type dabetre
lpeidate]
Em“’
Ol taCd | =
ompuiesd Cobren Specfcabon
Condersed Data Type daletere
DesTipon
Full bt SgeciRcabon He
Tﬂenltrin;emm tey
Ie Spares L)
R =
Dietalt Vabse o Banding

[Thsl] o Talbsle_1 -

IE!H

Figure 2-4 Setting the Table Designer properties

Page | 16

4. Save your new table by selecting File > Save Table 1, as shown in Figure 2-5.

Fig | Bt Wew Project Debug TableDesigner Tooks Window Comnunidy Help
& Connect Objct Explorer M= K ‘gi
| e » Y [sser A don o e —
Open » | cokmnMame | DetaType | Alowheds | [7hl] dbo.Table_1 .
[Add 00 - CORPORATE \ad_patndireg) a neEE nt [w IZI“
= J Flarethiame varchar(5) =] = .
_J PlarstTyme varchar{) F 3 Toble, 1
- Radis varchar(5) [= :
FEETE w45 » | TmeCreated dstztrre =3 Descrphen
+_esBha j5e-b 120483 Ddad-e, r Schema dba
= S it st 4 k= 2
o Tdervity Col
y Lock Escaly Tadle
= [Roaguiar Lt PRI TRUAR
eSO
) e Brroiog
7] SslesiT.Address
Tl SsleslT Custeer nage PEIMAR
2 SelesT.Customeriddress
O SskestT Product Cokm Froperbes |
T Salsi T ProcuctCatiger sl
¥] SslesTFroductDesaipbon EI"
T SsleslT Produciodsl H [Gemeral) -
] SsenT FroduxctodeProducDesopbon ame) TieweiCr g
T SsesT SsesOrderDetal Alerss Py Yes
7 Seen T SaesOrdertinace Dits Type i
Vs Dedmit Vske or Birding loridated)
B G Symanyma E) Table Desigrer
i Programmablity — - ﬂ
i Service Broker]
=3 Sioroe Default Vahse or Badng -
|l Sequnty (Tdentity)
T Sty -
4| | "
Dirls) Saved

Figure 2-5 Saving the new table

5. Type the new name of the table you are saving, as shown in Figure 2-6.

Choose Name d

Enter a name for the table:
| Planets]

[o | cance |

Your new table will appear under the Tables section, as depicted in Figure 2-7.

Figure 2-6 Naming the table

Page | 17

Pl Edt ew Project Debug ook indow Communty Hep
ey | shh S S e S

Comect- 3 4w T H S

E1 | wend00ie 2 (SO Server 10.50. 1800 - CORPORATE \ad_patncreg) o)

Figure 2-7 The newly created table

PAUSE. Leave the SSMS interface open for the next exercise.

Page | 18

CREATE A TABLE USING TRANSACT-SQL COMMANDS

Creating tables within SSMS is simple because SSMS is an easy-to-use graphical
interface. But how can you create tables using ANSI SQL syntax? Quite simply, you
will use the create tab1e statement to accomplish this task. An example of proper
Transact-SQL syntax for creating a table is as follows:

CREATE TABLE planets (name varchar(50), diameter varchar(50))
INSERT INTO planets (name, diameter) VALUES (‘earth’, 10000)

Note that if SQL Server didn’t support implicit conversion, the following syntax would
be needed:

CERTIFICATION READY

How would you create a table using SSMS, and how would you create a table using
Transact-SQL commands?

2.2

CREATE TABLE planets (name varchar(50), diameter varchar(50))
INSERT INTO planets (name, diameter) VALUES (‘earth’, CAST (10000 as
varchar(50)))

Creating Views

THE BOTTOM LINE

As a database administrator, you must understand when to use views. You should
also know how to create views by using either a Transact-SQL statement or the
graphical designer.

A view is simply a virtual table consisting of different columns from one or more tables.
Unlike a table, a view is stored in a database as a query object; therefore, a view is an
object that obtains its data from one or more tables. Views that are based on this
definition are referred to as underlying tables. Once you have defined a view, you can
reference it as you would any other table in a database.

A view is meant to be a security mechanism; that is, a view ensures that users can
retrieve and modify only the data seen by them through their permissions, thus ensuring
they cannot see or access the remaining data in the underlying tables. A view is also a
mechanism to simplify query execution. Complex queries can be stored in the form of
a view and data from the view can then be mined using simple query statements.

Page | 19

Views ensure the security of data by restricting access to the following data:

Specific rows of tables

Specific columns of tables

Specific rows and columns of tables

Rows obtained by using joins

Statistical summaries of data in given tables

Subsets of another view or subsets of views and tables

Some common examples of views include the following:

A subset of rows or columns of a base table
A union of two or more tables

A join of two or more tables

A statistical summary of base tables

A subset of another view or some combination of views and base tables

Database views are designed to create a virtual table that is representative of one or
more tables in an alternative way. There are two major reasons you might want to
provide a view instead of enabling users to access the underlying tables in your database:
e Views allow you to limit the type of data users can access. You can grant

view permissions in designated tables, and you can also choose to deny

permissions for certain information.

e Views reduce complexity for end users so they don’t have to learn how to
write complex SQL queries. Instead, you can write those queries on their

behalf and hide them in a view.

When creating a view, be sure to consider database performance in your design. As
discussed briefly in Lesson 1, indexing plays a role in query time and an even greater
role in database performance improvements. But tread lightly: Adding indexes to the
schema can actually increase the overhead of your database due to the ongoing
maintenance of these indexes.

There are two methods for creating a view:

By using SSMS

By writing a Transact-SQL statement

We’ll cover both procedures in this section.

Page | 20

CREATE A VIEW USING SSMS

GET READY. Before you begin these steps, make sure SSMS is open and the
database to which you wish to add a view is highlighted. Then, follow these steps
to create your view:

Right-click the Views folder as shown in Figure 2-8, then select New View.
1. Expand the Views section by clicking the plus sign (+) next to Views.
Right-click the Views folder as shown in Figure 2-8, then select New View.

B, Microsoft SL Serve " pent Stusds

Fie Edt vew Progect Debup TableDesgner Tods Window Communty Help
Moy R DS Sdd g

. “dd2El

WINIOSRRIAdv_- dia.Planets| - »]
comect~ %1 % m T F .8 | coumntame | CataTme | alowhuds | [Tbi] dba. Fanets .
% | ReportServerTemple 5 [B] viebontc - i B =
E ||| SherePor: AdminContend cobe l6eb1I0-480 ades _I Fane e vasrchar {501 =2 |—
% | SharePont_Config J PanetT ype i (53] = BM
% | WSS_Corbent_2030 - d (eme) Flanets
=1 |)| Advermureiiork T2008 Rads varchar {50 W o —
1 i Duatsbase Duagrams b | TereCreased AL BT = Dwscrpiton
5 3 Tables r Schema ke
= 3 Syshem Tables " nd 3
T dbe Buldhiersion B Table Designer
I &o.Brodog Idwnbity Cal
%] SalesiT.Address — =
O] SeeslT.Customer Lok Encals Table
® I Ssen T Customeriddness E Feguis Dot FRIMARY
T SaledlT Product ke At
I SeesiTSoductCategory -
2 SeleslT ProduciDesaipbon
O] SeenT SroducHodel Tewt/Trags BERMART
2 SaleaT ProducodeProducDesoiobon
% 7] SeewT SalesCrderDetel Colm: Properses |
] Ssles T SslecOrderiesder
2 dhe Panets EI“
== B (General) -
- S Vow... [Mave) TrmeCrested
® B3 Ao Muls: Tes
. * Dl Type: datetme
) 'Zl Seart Pormer Shel fotsraton Deefauit Vakue or Sndng (petdase (]}
iy B Table Designer
5k Reers , B |) I =
:I :: Rafesn Detailt Valae or Binding
[Seasty (dentity)
+ _JJ Seoanty -
1| | [
Ftemjs) Saved &

Figure 2-8 Creating a new view

The Add Table dialog box will open (see Figure 2-9).

Page | 21

Add Table 2| x|

Tml\news |chﬁons|5m_s_|

Address (SalesLT) -
AdventureWorksDWBuildVersion

BuildVersion

Customer (SalesLT)

CustomerAddress (SalesLT)

ErrorLog

Planets

Product (SalesLT)

ProductCategory (SalesLT) o
ProductDescription (SalesLT)

ProductModel (SaleslLT) _'_l

Need indbledalfee d ccdN e canimbinm (Colaat ™

Refresh add | Cose |

Figure 2-9 Add Table dialog box

Let’s explain a little bit about what this dialog box allows you to do:

* To specify the table to be used as the primary source, click the appropriate table in t
Tables tab of the dialog box.

* To use another existing view, click the Views tab of the dialog box.

* If you want to generate records from a function, you will find that on the Functions ta

* If you want to use more than one source, you can click each of the different tabs to fi
the table, view, or function you wish to add to your query.

* Once you have selected the desired source(s), simply click the Add button for each on

* Once you have selected and added all your desired sources, click the Close button to e
the Add Table dialog box.

Page | 22

2. As you click Add to add each source, you will see the information shown in
Figure 2-10.

Add Table 2] X
Tablec]vms | Functions | Synonyms |

Address (SalesLT) -
AdventureWorksDWBuildVersion
Buildversion

Customer (SalesLT)
CustomerAddress (SalesLT)
ErrorLog

Planets

Product (SalesLT)
ProductCategory (SalesLT)
ProductDescription (SalesLT)
ProductModel (SalesLT) LI

Meed cndbledalfNoe d bl e mnimdmm (O wlawt ™

Refresh | Add Cose |

Figure 2-10 Add Table dialog box output

After you have selected the objects you wish to use, the View Designer toolbar will be
added, in which you can further map out the views you wish to incorporate into your

query.

You can also create views using Transact-SQL. Here, once you add your sources to the
diagram pane, the syntax for these sources is shown in the SQL pane.

CERTIFICATION READY
How do you create a view using SSMS?
2.3

To create a view using Transact-SQL syntax, a simple convention is as follows:

Page | 23

CREATE VIEW vwCustomer
AS
SELECT CustomerId, Company Name, Phone

FROM Customers

This creates a view called vwCustomer that will be stored as an object. Here, the data
that is queried from the columns comes from the Customers table.

Page | 24

Creating Stored Procedures

THE BOTTOM LINE
By creating stored procedures and functions, you make it possible to select, insert,
update, or delete data using these statements.

So far, you’ve learned how to use different data types to create tables and views through
the SSMS interface as well as through Transact-SQL syntax statements. Now it’s time
to learn how to create stored procedure statements using the same graphic interface.

A stored procedure is a previously written SQL statement that has been “stored” or
saved into a database. One way to save time when running the same query over and
over again is to create a stored procedure that you can then execute from within the
database’s command environment. An example of executing a stored procedure is as
follows:

exec usp_displayallusers

Here, the name of the stored procedure is “usp_displayallusers,” and “exec” tells SQL
Server to execute the code in the stored procedure. Indeed, when you create your own
stored procedure, it will have the designation “usp” in front of it, which indicates to
SQL that this is a user-created stored procedure.

Now, say that your stored procedure named “displayallusers™ has a simple code inside
it, such as the following:

SELECT * FROM USERLIST

What this select statement does is return all the data that is found in the USERLIST
table. One question you may be asking right now is, “Why can’t I just run the query I
want to return the information | need? In other words, you may wonder why you should
bother with creating a stored procedure. Note that the “*” you see in the above statement
means you are not defining criteria you would like matched in the output. In other words,
you are returning all records from the userlist table.

Perhaps you are working on a website built with ASP pages and you need to call a
stored procedure from that, or from within another application such as Visual Basic, or
from another application entirely. Using a stored procedure allows you to store all the
logic inside the database, so by using a simple command, you can query and retrieve all
information from all sources.

Page | 25

A stored procedure is an already-written SQL statement that is stored in a database. If
you are continually using the same SQL statement within your database, it is simpler to
create a stored procedure for it. Now, simple statements like a “select” statement would
not entirely benefit from a stored procedure, but if you are creating complex query
statements, your best bet is to create a stored procedure for them and run that stored
procedure from within the Query Analyzer using an execute (exec) command.

CREATE A STORED PROCEDURE

GET READY. Before you begin these steps, make sure SSMS is open and the

database to which you wish to add a view is highlighted. Then, follow these steps
to create a stored procedure:

1. Expand the Programmability section by clicking the appropriate + sign, then
expand the Stored Procedure section by clicking the appropriate + sign.

2. Right-click Stored Procedures and choose New Stored Procedure (see
Figure 2-11).

Fe Bt Ves Debog Took Wedke Communly beln

o Gy | Uy o 16 5 | LD [T W B nll
Cormct- H K = T 1.4

= | win2008r I (SOL Server m.nm-mm:
Jm

:QM-HW
"V Pghcy Maragerent

- 7 Duta Collection ’ :‘ﬂ

Racindy

Figure 2-11 New Stored Procedure selection menu

Page | 26

The Text Editor window will open (see Figure 2-12), displaying the syntax. The

window contains a ready-made stored procedure template for you to add your own view
parameters.

How would you create a stored procedure with SSMS?
Fle Edt vew OQuery Froject Debug Todls Window Comwwnity Help
P e ey | |y | ol i LS D e g
(W% | Advertreworke TN v | 0 Emeate b B o [a-g"‘q 4]'1‘] 30X JCT
T NI st Queryaql «_brickreg (54))" -x |
comet B H m T B || --smmsssssssssssssssmsssssssmnnssssnsnmsnsnansnnan | et correcoon poram -
) |} an2008 2 (SQL Server 10,50 1600 - CORPORATE s _patricheag)] - late Explorer uaing: Tf fSls |
= 03 O —~Cruate Proceduse (Mew Mesu) . 50L —
¥ [System Datsbases D Agaregate Status
+ |_J Dalabase Srupshots Uew the Spucily Vaeluea I Lk da Paasasuty arvection
= L Adesnrrsiored THO0A command (Ctzl-Shifr-H) ve fill in tha DADADE
* _JDHMMIH values below
[Tables == Name
B 7 eewe ~=This Block of sorments will mor be imeluded im -
+ | Synomyms Lo—ehs definsion af the procsdurs ~
= (3 Pracrarsranny SET ANST WULLS oM Siate
= i Siored Procedures &0 2 Conmection
B SET QUOTED IDENTIFIER ON Correection wind00ar? (CoF|
® [dosamploglivor o £ Conmection Detalls
% 2 dbo.usoPrinErrer a ——
% O Puncions Author chuthor, , Ham)
= 3 Detsbass Triggers i -
i Assembles _"' = s i
& T Typee SOELPE i -
) Rues -
¥ [Defaits [CREATE FROCEDURE ;Frocedure Name, sysname. Frocedure
F T3 Plan Gt N —= Nfd the parsmetsrs for the stored procedurs -
+ 4 Servce Sroker EFaraml, sysnames, @Epl Tacatypes For Faraml
[Seernge fParanl, sysnams, @§pd Datatype For Paraml, .
¥ 3 Searity RS #45
* J-I.:pnrbmw B BEGIN i @
E |)| BeportiareTanpDl B SET HOCOUMT OM added to prevent extra result
| J SherePont_AdminContent_ocliba bbe 5320483 St aa interfering with SELECT statemsnta.
B | Shwrsrons_Confg SET WOCOUNT O
® || WES_Corvient_2000
*) Searity Insert staTemants for procedurs "'.l*:-IL =] | Name
5 L3 Server Cipects "] B || e rme of thee cosction.
o ¥ [Baduo Devicss | LlJ (16,50 BTH) | CORPORATE \ad_patickre... | AdvertureWorks TI008 | K:00:00 | 8 rws
Ready Ln 30 Col 43 ch40 L

Figure 2-12 Sample Text Editor window

Microsoft SQL Server already has hundreds of system-stored procedures so that you
can perform basic functions. For example, you can use the Select Stored Procedure to
retrieve or select rows from a database. Some of the more popular stored procedures

will be covered in the next lesson including SELECT, INSERT, UPDATE,
and DELETE .

Page | 27

Understanding SQL Injections

TAKE NOTE*
A SQL injection is an attack in which malicious code is inserted into strings to be
passed on later when parsing or executing statements.

Before you learn the syntax statements for selecting, inserting, updating, and
deleting data, you need to understand what a SQL injection is. In short, a SQL
injection is an attack in which malicious code is inserted into strings that are later
passed on to instances of SQL Server waiting for parsing and execution. Any
procedure that constructs SQL statements should be reviewed continually for
injection vulnerabilities because SQL Server will execute all syntactically valid
queries from any source.

The primary form of SQL injection is a direct insertion of code into user-input variables
that are concatenated with SQL commands and then executed. A less direct method of
attack injects malicious code into strings that are destined for storage in a table or are
considered metadata. When these stored strings are subsequently concatenated into the
dynamic SQL command, the malicious code will be executed.

The injection process’s function is to terminate a text string prematurely and append a
new command directed from it; because the inserted command may have additional
strings appended to it before it is executed, the malefactor terminates the injected string
with a comment mark “—”, making subsequent text ignored at execution time.

Page | 28

SKILL SUMMARY

IN THIS LESSON, YOU LEARNED THE FOLLOWING:

1

A data type is an attribute that specifies the type of data an object can hold, as well as how many
bytes each data type takes up.

2

As a general rule, if you have two data types that differ only in how many bytes each uses, the one
with more bytes has a larger range of values and/or increased precision.

Microsoft SQL Server includes a wide range of predefined data types called built-in data types. Most
of the databases you will create or use will employ only these data types.

Exact numeric data types are the most common SQL Server data types used to store numeric
information.

o1

int is the primary integer (whole number) data type.

Precision (p) is the maximum total number of decimal digits that can be stored in a numeric data
type, both to the left and to the right of the decimal point; this value must be at least 1 and at most
38. The default precision number is 18.

money and smal1money are Transact-SQL data types you would use to represent monetary or
currency values. Both data types are accurate to 1/10,000th of the monetary units they represent.

Approximate numeric data types are not as commonly used as other SQL Server

data types.

If you need more precision (more decimal places) than is available with the exact numeric data
types, you should use the float or real data types, both of which typically take additional bytes
of storage.

The date and time data types, of course, deal with dates and times. These data types
include date, datetime2,datetime,datetimeoffset, smalldatetime,

and time.

10

SQL Server supports implicit conversions, which can occur without specifying the
actual callout function (cast or convert) . Explicit conversions require you to

use the functions cast or convert specifically.

11

A regular character uses one byte of storage for each character, which allows you to
define one of 256 possible characters; this accommodates English and some

European languages

12

A Unicode character uses two bytes of storage per character so that you can
represent one of 65,536 characters. This added capacity means that Unicode can

store characters from almost any language.

Page | 29

13

When you use a VAR element, SQL Server will preserve space in the row in which
this element resides on the basis of on the column’s defined size and not the actual

number of characters in the character string itself.

14 The Unicode character strings nchar and nvarchar can either be fixed or
variable, like regular character strings; however, they use the UNICODE UCS-2
character set.

15 The purpose of a table is to provide a structure for storing data within a relational
database.

16 A view is simply a virtual table that consists of different columns from one or more
tables. Unlike a table, a view is stored in a database as a query object; therefore, a
view is an object that obtains its data from one or more tables.

17 A stored procedure is a previously written SQL statement that has been stored or
saved into a database.

18

A SQL injection is an attack in which malicious code is inserted into strings that are

later passed on to instances of SQL Server for parsing and execution.

Page | 30

